Строительные материалы: щебень, песок, цемент, сухая смесь, озеленение, грунт, торф, чернозем, керамзит, бетон, кирпич, ЖБИ, пеноблоки, кварц, мрамор, гранит.
Строительные материалы: щебень, песок, цемент, сухая смесь, озеленение, грунт, торф, чернозем, керамзит, бетон, кирпич, ЖБИ, пеноблоки, кварц, мрамор, гранит.
Строительные материалы
с доставкой по Москве
и Московской области
   
      главная       о фирме       цены       услуги       контакты  
  товары
      транспорт     вопросы     партнеры     справка              
щебень ЩЕБЕНЬ
щебень ГРАВИЙ
щебень ОТСЕВ
песок ПЕСОК
озеленение ОЗЕЛЕНЕНИЕ
грунт ГРУНТ ПЛОДОРОДНЫЙ
торф ТОРФ
чернозем ЧЕРНОЗЕМ
керамзит КЕРАМЗИТ
гранит ГРАНИТНАЯ КРОШКА
асфальтная крошка АСФАЛЬТОВАЯ КРОШКА
цемент, пескобетон ЦЕМЕНТ
сухая смесь СУХАЯ СМЕСЬ
щебень ПЕСКО СОЛЬ
кирпич, камень строительный КИРПИЧ
пеноблоки ПЕНОБЛОКИ
блоки БЛОКИ
тротуарная плитка ТРОТУАРНАЯ ПЛИТКА
бордюр дорожный БОРДЮР ДОРОЖНЫЙ
бетон, раствор БЕТОН
ЖБИ ЖБИ
УСЛУГИ
щебень ВЫВОЗ СНЕГА  
щебень ВЫВОЗ ГРУНТА  
     

Предлагаем услуги по  вывозу снега и вывозу грунта.

Строительный словарь

А  Б  В  Г  Д  Е  Ж  З  И  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я


Компрессор

Компрессор, устройство для сжатия и подачи воздуха или другого газа под давлением. Степень повышения давления в компрессоре более 3. Для подачи воздуха с повышением его давления менее чем в 2—3 раза применяют воздуходувки, а при напорах до 10 кн/м2 (1000 мм вод. cm.) — вентиляторы. Компрессоры впервые стали применяться в середине 19 в., в России строятся с начала 20 в.

Основы теории центробежных машин были заложены Л. Эйлером, теория осевых компрессоров и вентиляторов создавалась благодаря трудам Н. Е. Жуковского, С. А. Чаплыгина и других учёных.

По принципу действия и основным конструктивным особенностям различают компрессоры поршневые, ротационные, центробежные, осевые и струйные. Компрессоры также подразделяют по роду сжимаемого газа (воздушные, кислородные и др.), по создаваемому давлению рн (низкого давления — от 0,3 до 1 Мн/м2, среднего — до 10 Мн/м2 и высокого — выше 10 Мн/м2), по производительности, то есть объёму всасываемого Vвс (или сжатого) газа в единицу времени (обычно в м3/мин) и другим признакам. Компрессоры также характеризуются частотой оборотов n и потребляемой мощностью N.

Строительный словарь. Компрессор.

Поршневой компрессор в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых компрессоров имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые компрессоры бывают одно- и многоцилиндровые, с вертикальным, горизонтальным, V- или W-oбразным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия. Действие одноступенчатого воздушного поршневого компрессора заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2 сообщает поршню 3 возвратные движения. При этом в рабочем цилиндре 4 из-за, увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5, возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9, открывает его и через воздухозаборник (с фильтром) 8 поступает в рабочий цилиндр. При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6. При сжатии газа в компрессоре его температура значительно повышается. Для предотвращения самовозгорания смазки компрессоры оборудуются водяным (труба 10 для подвода воды) или воздушным охлаждением. При этом процесс сжатия воздуха будет приближаться к изотермическому (с постоянной температурой), который является теоретически наивыгоднейшим. Одноступенчатый компрессор, исходя из условий безопасности и экономичности его работы, целесообразно применять со степенью повышения давления при сжатии до b = 7—8. При больших сжатиях применяются многоступенчатые компрессоры, в которых, чередуя сжатие с промежуточным охлаждением, можно получать газ очень высоких давлений — выше 10 Мн/м2. В поршневых компрессорах обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе. Существует несколько способов регулирования. Простейший из них — регулирование изменением частоты вращения вала.

Ротационные компрессоры имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые компрессоры, имеющие ротор 2 с пазами, в которые свободно входят пластины 3. Ротор расположен в цилиндре корпуса 4 эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра корпуса, в левой части компрессора будут возрастать, что обеспечит всасывание газа через отверстие 1. В правой части компрессора объёмы этих пространств уменьшаются, находящийся в них газ сжимается и затем подаётся из компрессора в холодильник 5 или непосредственно в нагнетательный трубопровод. Корпус ротационного компрессора охлаждается водой, для подвода и отвода которой предусмотрены трубы 6 и 7. Степень повышения давления в одной ступени пластинчатого ротационного компрессора обычно бывает от 3 до 6. Двухступенчатые пластинчатые ротационного компрессора с промежуточным охлаждением газа обеспечивают давление до 1,5 Мн/м2.

Принципы действия ротационного и поршневого компрессоров в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном компрессоре всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного компрессора, в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуум-насосы. Регулирование производительности ротационного компрессора осуществляется обычно изменением частоты вращения их ротора.

Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый компрессор разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12 и 13. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень компрессора и т.д.

Получение больших степеней повышения давления газа в одной ступени (более 25—30, а у промышленных компрессоров — 8—12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280—500 м/сек. Важной особенностью центробежных компрессоров (а также осевых) является зависимость давления сжатого газа, потребляемой мощности, а также кпд от его производительности. Характер этой зависимости для каждой марки компрессора отражается на графиках, называемых рабочими характеристиками.

Регулирование работы центробежных компрессоров осуществляется различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и др.

Осевой компрессор имеет ротор 4, состоящий обычно из нескольких рядов рабочих лопаток 6. На внутренней стенке корпуса 2 располагаются ряды направляющих лопаток 5. Всасывание газа происходит через канал 3, а нагнетание через канал 1. Одну ступень осевого компрессора составляет ряд рабочих и ряд направляющих лопаток. При работе осевого компрессора вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси компрессора (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых компрессоров между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого компрессора обычно равна 1,2—1,3, т. е. значительно ниже, чем у центробежных компрессоров, но кпд у них достигнут самый высокий из всех разновидностей компрессоров.

Зависимость давления, потребляемой мощности и кпд от производительности для нескольких постоянных частот вращения ротора при одинаковой температуре всасываемого газа представляют в виде рабочих характеристик. Регулирование осевых компрессоров осуществляется так же, как и центробежных. Осевые компрессоры применяют в составе газотурбинных установок.

Техническое совершенство осевых, а также ротационных, центробежных и поршневых компрессоров оценивают по их механическому кпд и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически наивыгоднейшему в данных условиях.

Струйные компрессоры по устройству и принципу действия аналогичны струйным насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные компрессоры обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.

Основные типы компрессоров, их параметры и области применения показаны в таблице.

Типы компрессоров и их характеристика

Тип компрессора Предельные параметры Область применения
Поршневой Vвс = 2—5 м3/мин
Рн = 0,3—200 Мн/м2 (лабораторно до 7000 Мн/м2)
n = 60—1000 об/мин
N до 5500 квт
Химическая промышленность, холодильные установки, питание пневматических систем, гаражное хозяйство.
Ротационный Vвс = 0,5—300 м3/мин
Рн = 0,3—1,5 Мн/м2
n = 300—3000 об/мин
N до 1100 квт
Химическая промышленность, дутье в некоторых металлургических печах и др.
Центробежный Vвс = 10—2000 м3/мин
Рн = 0,2—1,2 Мн/м2
n = 1500—10000 (до 30000) об/мин
N до 4400 квт (для авиационных — до десятков тысяч квт)
Центральные компрессорные станции в металлургической, машиностроительной, горнорудной, нефтеперерабатывающей промышленности
Осевой Vвс = 100—20000 м3/мин
Рн = 0,2—0,6 Мн/м2
n = 2500—20000 об/мин
N до 4400 квт (для авиационных — до 70000 квт)
Доменные и сталелитейные заводы, наддув поршневых двигателей, газотурбинных установок, авиационных реактивных двигателей и др.

По материалам: Большая советская энциклопедия

 

 

Справка >> Строительный словарь >> Компрессор

 

E-mail: tmvt2012@yandex.ru  



строительные материалы | товары | песок | щебень | бетон | мрамор | кварц | гранит | кирпич | цемент | керамзит
озеленение | грунт | торф | чернозем | сухая смесь | жби | пеноблоки | прочие | цены | услуги | транспорт
новости | вопросы | справка | ГОСТы строительные | партнеры | контакты | ссылки | карта сайта



 
Яндекс.Метрика